CHEM 842: ADVANCED ELECTROANALYTICAL METHODS

Instruction: Answer ALL the questions

Useful data are provided

General data and fundamental constants

Quantity	Symbol	Value	Power of ten	Units
Speed of light	С	2.997 925 58*	108	$\mathrm{m}~\mathrm{s}^{-1}$
Elementary charge	е	1.602 176	10 ⁻¹⁹	C
Faraday's constant	$F = N_A e$	9.648 53	10^{4}	C mol ⁻¹
Boltzmann's constant	k	1.380 65	10 ⁻²³	J K ⁻¹
Gas constant	$R = N_A k$	8.314 47		J K ⁻¹ mol ⁻¹
		8.314 47	10^{-2}	dm ³ bar K ⁻¹ mol ⁻¹
		8.205 74	10^{-2}	dm ³ atm K ⁻¹ mol ⁻¹
		6.236 37	10	dm ³ Torr K ⁻¹ mol ⁻¹
Planck's constant	h	6.626 08	10^{-34}	J s
	$\hbar = h/2\pi$	1.054 57	10 ⁻³⁴	J s
Avogadro's constant	$N_{\rm A}$	6.022 14	10 ²³	mol ⁻¹
Atomic mass constant	$m_{ m u}$	1.660 54	10 ⁻²⁷	kg
Mass				
electron	m_e	9.109 38	10^{-31}	kg
proton	$m_{\rm p}$	1.672 62	10^{-27}	kg
neutron	$m_{\rm n}$	1.674 93	10-27	kg
Vacuum permittivity	$\varepsilon_0 = 1/c^2 \mu_0$	8.854 19	10 ⁻¹²	$J^{-1} C^2 m^{-1}$
	4πe ₀	1.112 65	10 ⁻¹⁰	J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_0	4π	10 ⁻⁷	$J s^2 C^{-2} m^{-1} (= T^2 J^{-1} m^3)$
Magneton				
Bohr	$\mu_{\rm R} = e\hbar/2m_e$	9.274 01	10^{-24}	$J T^{-1}$
nuclear	$\mu_{\rm N} = e\hbar/2m_{\rm p}$	5.050 78	10^{-27}	$J T^{-1}$
g value	g _e	2.002 32		
Bohr radius	$a_0 = 4\pi \varepsilon_0 \hbar^2 / m_e e^2$	5.291 77	10 ⁻¹¹	m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35	10 ⁻³	
	α^{-1}	1.370 36	10 ²	
Second radiation constant	$c_2 = hc/k$	1.438 78	10 ⁻²	m K
Stefan-Boltzmann constant	$\sigma = 2\pi^5 k^4 / 15 h^3 c^2$	5.670 51	10 ⁻⁸	${ m W}~{ m m}^{-2}~{ m K}^{-4}$
Rydberg constant	$R = m_e e^4 / 8h^3 c \varepsilon_0^2$	1.097 37	10 ⁵	cm ⁻¹
Standard acceleration of free fall	g	9.806 65*		m s ⁻²
Gravitational constant	G	6.673	10 ⁻¹¹	N m ² kg ⁻²
*Evactualua				

^{*}Exact value

QUESTION ONE (20 MARKS)

(a)

Ceresa, Pretsch, and Bakker⁴¹ investigated three ISEs for determining calcium concentrations. All three electrodes used the same membrane, but differed in the composition of the inner solution. Electrode 1 was a conventional ISE with an inner solution of 1.00×10^{-3} M CaCl₂ and 0.10 M NaCl. Electrode 2 (low activity of Ca²⁺) had an inner solution containing the same analytical concentration of CaCl₂, but with 5.0×10^{-2} M EDTA adjusted to a pH of 9.0 with 6.0×10^{-2} M NaOH. Electrode 3 (high Ca²⁺ activity) had an inner solution of 1.00 M Ca(NO₃)₂.

- (a) Determine the Ca²⁺ concentration in the inner solution of Electrode 2.
- (b) Determine the ionic strength of the solution in Electrode 2.
- (c) Use the Debye-Hückel equation and determine the activity of Ca^{2+} in Electrode 2. Use 0.6 nm for the α_X value for Ca^{2+} (see Appendix 2).

(d) Electrode 1 was used in a cell with a calomel reference electrode to measure standard calcium solutions with activities ranging from 0.001 M to 1.00×10^{-9} M. The following data were obtained.

Activity of Ca ²⁺ , M	Cell Potential, mV
1.0×10^{-3}	93
1.0×10^{-4}	73
1.0×10^{-5}	37
1.0×10^{-6}	2
1.0×10^{-7}	-23
1.0×10^{-8}	-51
1.0×10^{-9}	-55

Plot the cell potential versus the pCa and determine the pCa value where the plot deviates more than 5% from linearity (the limit of linearity; see Section 1E-2). For the linear portion, determine the slope and intercept of the plot. Does the plot obey Equation 23-29 as expected?

(e) For Electrode 2, the following results were obtained.

Activity of Ca ²⁺ , M	Cell Potential, mV
1.0×10^{-3}	228
1.0×10^{-4}	190
1.0×10^{-5}	165
1.0×10^{-6}	139
5.6×10^{-7}	105
3.2×10^{-7}	63
1.8×10^{-7}	36
1.0×10^{-7}	23
1.0×10^{-8}	18
1.0×10^{-9}	17

Again plot cell potential versus pCa and determine the range of linearity for Electrode 2. Determine the slope and intercept for the linear portion. Does this electrode obey Equation 21-24 for the higher Ca²⁺ activities?

(f) Electrode 2 is said to be super-nernstian for concentrations from 10⁻⁷ M to 10⁻⁶ M. Why is this term used? If you have access to a library that subscribes to Analytical Chemistry or has web access to the journal, read the article. This electrode is said to have Ca²⁺ uptake. What does this mean and how might it explain the response?

(g) Electrode 3 gave the following results.

Activity of Ca ²⁺ , M	Cell Potential, mV
1.0×10^{-3}	175
1.0×10^{-4}	150
1.0×10^{-5}	123
1.0×10^{-6}	88
1.0×10^{-7}	75
1.0×10^{-8}	72
1.0×10^{-9}	71

Plot the cell potential versus pCa and determine the range of linearity. Again determine the slope and intercept. Does this electrode obey Equation 23-29?

- (h) Electrode 3 is said to have Ca²⁺ release. Explain this term from the article and describe how it might explain the response.
- Does the article give any alternative explanations for the experimental results? If so, describe these
 alternatives.

(10 marks)

(b)

Calculate the time required for a constant current of 0.905 A to deposit 0.300 g of (a) TI(III) as the element on a cathode, (b) TI(I) as the TI_2O_3 on an anode, and (c) TI(I) as the element on a cathode.

(2 marks)

(b)

At a potential of -1.0 V (versus SCE), carbon tetrachloride in methanol is reduced to chloroform at a Hg cathode:

$$2CCl_4 + 2H^+ + 2e^- + 2Hg(l) \longrightarrow 2CHCl_3 + Hg_2Cl_2(s)$$

At -1.80 V, the chloroform further reacts to give methane:

$$2CHCl_3 + 6H^+ + 6e^- + 6Hg(I) \longrightarrow 2CH_4 + 3Hg_2Cl_2(s)$$

Several 0.750-g samples containing CCl₄, CHCl₃, and inert organic species were dissolved in methanol and electrolyzed at -1.0 V until the current approached zero. A coulometer indicated the charge required to complete the reaction, as given in the second column of the following table. The potential of the cathode was then adjusted to -1.80 V. The additional charge required to complete the reaction at this potential is given in the third column of the table. Calculate the percent CCl₄ and CHCl₃ in each mixture.

Sample No.	Charge Required at -1.0 V, C	Charge Required at -1.8 V, C
	11.63	68.60
2	21.52	85,33
3	6.22	45.98
4	12.92	55.31

(6 marks)

(d)

- 1. Polarography is considered, so far as the sample is concerned, as a non-destructive method of analysis. Is this true?
- 2. Why is stirring of the solution avoided in polarography?
- 3. The method of standard additions is considered as yielding more reliable results than that of standard solutions. Why?
- 4. Why, for the dropping mercury electrode, does the height of the column of Hg have an influence upon the value of the current of diffusion? Upon what is this effect based?

QUESTION TWO (20 MARKS)

(a)

A sample of 25 mL prepared for an electrolysis experiment has a zinc concentration of approximately 2×10^{-8} M which leads to the passage of a current of 1.5 nA. Calculate the time necessary to deposit 3% of the Zn present.

Show that the technique of stripping is more sensitive.

(2 marks)

(b)

For a fully electrochemically irreversible one-electron system, show how analysis of the voltammetry may yield information about the transition state for the process.

(4 marks)

(c)

For a fully reversible one-electron reduction, what gradient will be obtained for a plot of $\ln |I|$ vs E? Assume that the redox species is confined to a thin layer such that

$$[A]_0 + [B]_0 = [A]_{\text{bulk}}$$
 (2.2)

and that the diffusive flux may be treated as proportional to the concentration difference ($[A]_0-[A]_{bulk}$).

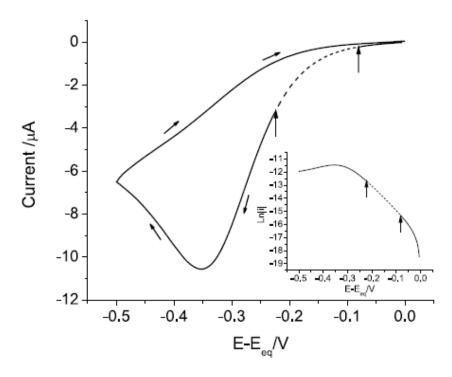


Fig. 2.3 The cyclic voltammetric response for an irreversible one-electron reduction process, with the region required for Tafel analysis highlighted. The inset shows the Tafel plot for the forward scan highlighted is the required linear region. The voltage scan starts at 0.0 V and sweeps negatively to -0.5 V before returning to 0.0 V (small arrows indicate scan direction).

(4 marks)

- (i) Discuss the necessity of supporting electrolyte for conventional voltammetry, with reference to: a) the double layer; b) electric fields in bulk solution; c) the non-ideality of an electrolytic solution.
- (ii) Under what conditions might the addition of excess supporting electrolyte be inappropriate or impossible?

(10 marks)

QUESTION THREE (20 MARKS)

(a)

A potential step experiment was carried out in a solution containing 0.05 M ferrocyanide ($[Fe(CN)_6]^{4-}$) dissolved in a solution containing a large excess of inert electrolyte. Care was taken to ensure that there was no stirring of the solution during the experiment. The potential was stepped from a value where there was no reaction to a potential at which the $[Fe(CN)_6]^{4-}$ was oxidised to $[Fe(CN)_6]^{3-}$ at a mass transport controlled rate, and the following currents were recorded:

t/s	0.1	0.2	0.4	0.8	1.2
I/mA	6.9	4.9	3.4	2.4	2.0

- (i) Explain why it is necessary to have a large excess of inert electrolyte present for the experiment.
- (ii) Why is it important to make sure that there is no stirring of the solution during the experiment?
- (iii) Make a sketch of the concentration of [Fe(CN)₆]⁴⁻ as a function of distance away from the electrode immediately before the potential step and at two different times after the potential step.
- (iv) Given that the area of the electrode was 0.3 cm^2 , calculate the diffusion coefficient for $[\text{Fe}(\text{CN})_6]^{4-}$ in the solution.
- (v) Why is the time scale of the experiment limited to around a second?

(8 marks)

(b)

Figure 4.2 depicts a cyclic voltammogram for the one-electron irreversible reduction of species A to B, where the electrochemical rate constant (k^0) equals 10^{-6} cm s⁻¹ and the transfer coefficient (α) is 0.5. Problem 4.1 discussed the salient features of a reversible cyclic voltammogram; with reference to this, explain the major differences between the two cases. Specifically refer to reasons:

- · why the peak-to-peak separation is greater for the irreversible case.
- why the reverse peak current for the irreversible case is substantially less than the forward peak current.

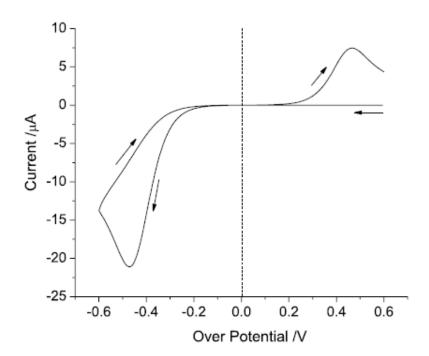


Fig. 4.2 Cyclic voltammogram for the irreversible reduction of A to B. Arrows indicate the scan direction. The current has been plotted against overpotential $(E - E_{f,A/B}^{\ominus})$.

(4 marks)

Small particles of calcite (calcium carbonate, CaCO₃) dissolve in acidic solution by means of the following mechanism:

$$H_{(aq)}^{+} + CaCO_{3(s)} \xrightarrow{k_{1}} Ca_{(aq)}^{2+} + HCO_{3(aq)}^{-}$$
 $HCO_{3(aq)}^{-} + H_{(aq)}^{+} \implies H_{2}CO_{3(aq)}$
 $H_{2}CO_{3(aq)} \rightarrow H_{2}O_{(l)} + CO_{2(g)}$

The following rate law has been measured [R.G. Compton *et al.*, *Freshwater Biology* 22 (1989) 285] for the reaction of protons at the calcite surface:

$$J_{\text{Ca}^{2+}}/\text{mol cm}^{-2} \text{ s}^{-1} = k_1[\text{H}^+]_0$$
 (5.3)

where $k_1 = 0.043 \,\mathrm{cm}\,\mathrm{s}^{-1}$ at 25°C.

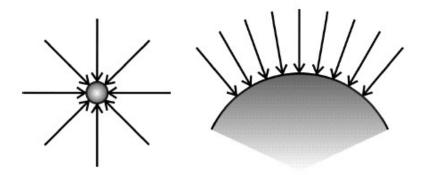


Fig. 5.2 Schematic of convergent and linear types of diffusion towards spherical electrodes of different sizes.

Explain the form of the rate equation and suggest an explanation for the observation that while large (>100 μ m) particles of calcite dissolve with a rate controlled by the diffusion of protons to the calcite surface, for much smaller particles the surface controlled reaction quantifed by Eq. 5.3 is found to apply. Assume a value of 7.5×10^{-5} cm² s⁻¹ for the diffusion coefficient of H⁺ in aqueous solution.

(4 marks)

Through the use of *highly ordered pyrolytic graphite* (HOPG) it is possible to produce an electrode which is predominantly 'basal' in character, but even with such a surface, edge plane defects will be present in the form of 'steps' (as indicated in Fig. 6.1). Careful preparation can lead to a surface where these edge plane defects are up to $1-10~\mu\mathrm{M}$ apart.

- (i) From your knowledge of the electrochemistry of carbon surfaces, explain how these edge plane steps can dominate the observed voltammetry.
- (ii) Suggest why, when modelling such systems, the use of a one-dimensional diffusion model is inappropriate.

(3 marks)

PERIODIC TABLE OF THE ELEMENTS

0 18	2 He 4.0026	Ne 20.1797	18 Ar 39.948	36 Kr 83.798	54 Xe 131.293	86 Rn (222)	Uuo (294)
VIIA 17	1 H 1.008	9 F 189984	17 CI 35.453	35 Br 79.904	53 I 126.9045	85 At (210)	Uus (294)
	VIA 16	8 0 0 15,999	16 S 32.06	34 Se 78.96	52 Te	Po (209)	116 Lv (293)
	VA 15	7 N 14.007	15 P 30.9738	33 As 74.9216	51 Sb 121.760	83 Bi 208.9804	Uup (288)
	IVA 14	6 C 12.011	14 Si 28.085	32 Ge 72.63	50 Sn 118.710	82 Pb	H4 F1 (289)
	IIIA 13	5 B 10.81	13 A1 26.9815	31 Ga 69.723	49 In 114.818	81 TI 204.38	Uut (284)
			11 B	30 Zn 65.38	48 Cd	80 Hg	Cn Cn (285)
			E II	20 Cu 63.546	47 Ag 107.8682	79 Au 196.9666	Rg (280)
			10	28 Ni 58.6934	46 Pd	78 Pt	Ds (281)
	_		AIII	27 Co 58 9332	45 Rh 102.9055	77 Ir 192.217	108 Mt
			∞	36 Fe	44 Ru 101.07	76 Os 190.23	108 Hs
stals	spic		VIIB	25 Mn 54.9380	45 Tc (98)	75 Re	107 Bh
Metals Normetals	Metalloids		VIB	24 Cr 51.9961	42 Mo	74 W 183.84	Sg (271)
			S S	23 V 50.9415	41 Nb 92.9064	73 Ta 80.9479	105 Db
			4 A	22 Ti 47.867	40 Zr 91.224	72 Hf 178.49	104 Rf (265)
							*
			3	21 Sc 44.9559	39 Y 88.9058	57 * La	8 * Ac * (227)
	IIA 2	4 Be	12 Mg 24.3050	20 Ca 40.078	38 Sr 87.62	56 Ba 137.327	88 Ra (226)
IA 1	1 H 1.008	3 Li 6941	Na 22 9898	19 K 39.0983	37 Rb 85.4678	55 Cs 132.9055	87 Fr (223)
	-	71	т	4	v	9	7

us.	ı
e.	١
Se	١
e	1
·ă	ı
ha	١
Ξ	1
_	١
w	

		00	
7.1	Γ	174.9668	
20	ΧP	173.054	
69	Tm	168.9342	
89	Er	167.259	
19	Но	164.9303	
999	Dy	162.500	
65	TP	158.9254	
25	PS	157.25	
63	Eu	151.964	
62	Sm	150.36	
61	Pm	(145)	
09	PN	144.242	
59	Pr	140.9076	
58	ပိ	140.116	

Note: Atomic masses are 2009

*** Actinide Series
IUPAC values (up to four decinal places). More accurate values for some elements are gi ven in the table inside the back cover.

*** Actinide Series 91

*** Actinide Series

86	16	92	93	ਡ	98	88	26	86	8	100	101	102	103
H	Pa	n	dN	Pu	Am	Cm	Bk	C	Es	Fm	Md	oN.	Lr
2.0381	231.0859	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)