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ABSTRACT 

Artificial neural networks (ANN) have been described as one of the models used for marker-based genomic 

predictions of complex traits in the field of animal breeding. It accommodates noisy, non-linearity in data set and 

makes decisions based on prior knowledge. This study evaluated the extent of non-linearity among explanatory 

variables within and between genotypes and phenotypes using ANN. A feedforward ANN was adopted with different 

number of neurons where Levenberg-Marquardt back-propagation algorithm was used to train the network. The 

construction and training of the network were done with matrix laboratory (MATLAB). Mean absolute error (MAE) 

and Pearson’s correlation coefficients (R) were used to measure the ANN predictive performance as a measure of 

extent of non-linearity among explanatory variables within and between genotypes and phenotypes. Results showed 

that the ANN models differed in predictive performance depending on the number of neurons in the hidden layer, for 

instance the neural network with one hidden layer containing 10 neurons in the hidden layer yielded high R-value of 

0.86 and MAE of 2.98E-3. When the network dimension was increased to 16 neurons the performance decreased to 

0.67 for R and MAE increased to 7.73E-2. After a further increase of neurons to 32 the model yielded R value of 0.27 

and MAE of 7.60E-2. The benchmark model for this study had an R of 0.77 and MAE of 5.72. Thus a model with 10 

neurons is enough to handle non-linearity in this kind of data set thus chosen as the best non-linear model. This is 

because dimension reduction of neurons in the hidden layer led to higher, more accurate and more consistent 

predictions for growth rate. In comparison to linear model, the best non-linear model performed better though the 

more complex non-linear architectures with 16 and 32 neurons could not outperform the linear model. Thus, linear 

models can as well produce reliable results for making genomic predictions. 

Keywords: Artificial neural network, Backpropagation, Mean absolute error 

 

INTRODUCTION 

Artificial neural networks (ANN) is a mathematical model which mimic the way the biological neural network of 

human brain works. It has the linear ability to learn from experience to improve its performance and to adapt 

themselves to changes in the environment (Njubi et al., 2010). The ANN architecture comprises of the input, hidden 

and output layers. These layers are connected by synapses denoted as weights. The weights are multiplied by input 

to give the desired output. ANNs have been successfully applied in fields of engineering, medical diagnosis, economic 

predictions and image recognition (Gorgulu, 2012). Consequently, it has proven to be a powerful modelling tool in 

comparison with other conventional models because it has an ability to predict outcome of non- linear and noisy data 

(Ehret et al., 2015). 

 

Although ANN model has shown a lot of inspiring success in prediction of outcome, its application in animal breeding 

is still scarce (Gorgulu, 2012), considering huge dataset available to be analyzed in this field. The first application of 

ANNs in the field of animal breeding was by Macrossam et al. (1999), where they used ANN as a method for 

optimizing mating allocation to maximize production traits in Australian dairy industry. Since then the development 

and applications of ANNs in animal breeding are increasing steadily, owing to their flexibility in classification 

mailto:chesangsumukwo@gmail.com
mailto:chesangsumukwo@gmail.com
mailto:aarapngeno@gmail.com
mailto:csumukwo@chuka.ac.ke


Chuka University 8th International Research Conference Proceedings 

7th and 8th October, 2021  Pg. 124-134 

 

 2 

recognition, prediction and forecasting, process control, optimization and decision support (Hanrahan, 2011). 

Artificial neural networks have been described as an additional model in performance prediction in the field of animal 

breeding (Gianola et al., 2011). 

 

It has been pointed out to be a promising tool for molecular marker-based genomic predictions of complex traits in 

animals (Ehret, et al., 2015). Early prediction of performance is important in reducing generation intervals, making 

management decisions and increasing intensity of selection thus greater genetic progress (Gorgulu, 2012). Therefore, 

phenotypic prediction from genotypes plays an important role in identifying and selecting superior candidates to be 

used in a breeding program, this facilitates early utilization of best genotypes for economic gain. Genomic prediction 

is always applied early in a breeding program as a way to increase the overall selection pressure thus increasing the 

rate of genetic gain (Mcdowell, 2016). Selection and mating strategies are important breeding 
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improvement tools. This genetic improvement tools plays a major role in designing a breeding program and have been 

adopted successfully in developed countries unlike in developing countries where application of these practices is still 

inadequate (Njubi et al., 2010). 

 

Breeding programs in the tropics are based primarily on performance based on production traits, because they are 

readily available and often used to measure economic profitability of an enterprise (Njubi et al., 2010). Production 

traits such as milk production are affected by linear and non-linear interactions between environmental conditions, 

management, and seasons. The commonly used linear algebraic methods (Mrode, 2014) possess inherent restrictions 

which makes them not able to consider all these interactions. ANN have been reported to possess an ability to 

accommodate noisy data, linear and non-linear relationships between variables and interactions between explanatory 

variables and finally ambiguity of data from environmental influence (Ehret et al., 2015; Gonzalez-Camacho et al., 

2012). They are also known for making accurate selection decisions based on prior knowledge of the outcome 

(Hosseinia et al., 2007). The focus of this study was, therefore, to evaluate the extent of non-linearity among 

explanatory variables within and between genotypes and phenotypes using ANN. 

 

MATERIALS AND METHODS 

Data Source 

The phenotypic and genotypic data were obtained from a wide-genome study in four Chinese indigenous chicken 

breeds (Yuan et al., 2018) as described in Section 3.1 of this study. Live body weight (BW) was measured at hatch 

and every week until 12 weeks of age. For genotypic data, blood sample were collected from the sampled birds 

followed DNA extraction using the phenol-chloroform method. Illumina 60K Chicken SNP BeadChip described by 

Groenen et al. (2011). Quality control was conducted on all genotypes, after imposing the quality control checks, a 

total of 46211 SNPs was retained for analysis. A.mat function of the rrBLUP package installed in R software were 

used to impute missing genotypes (SNPs) where markers with 50% missing genotypes were not imputed. Genotypes 

were coded as {0 1 2} based on R code script by Eva KF Chan. 

 

The data were split into training and test data set. Training data was splinted into 70:30, with 70% of the data being 

used for training, and 30% being used for validation. The sampling was random in order to avoid any selection bias 

in the dataset. Testing was done with the remaining samples that were not used during the training phase. Data 

preprocessing and analysis was performed using the R software. To investigate the performance of ANNs in evaluating 

the extent of non-linearity among explanatory variables within and between genotypes and phenotypes, the most 

frequently used feedforward ANN was adopted (Gianola et al., 2011). This study made a direct comparison of the 

different neural network types using identical datasets to determine the most suitable architecture for predicting a 

phenotypical trait based on genotypes. 

 

This study applied two types of ANN, the single-layer feedforward network which are frequently used for regression 

problems and forecasting (Besic et al., 2017). They are the simplest form of a layered network consisting of an input 

layer of source nodes that project directly onto an output layer of neurons. The multilayer feedforward network which 

is distinguished by the presence of one or more hidden layers, whose computational nodes are correspondingly called 

hidden neurons were adopted. According to Badnjevic et al. (2015) linear feedforward neural network is often 

sufficient to properly perform classification tasks and is also applicable to regression tasks. The information generated 

was relayed in one direction without any loops or cycles between the input and output. Random weights were assigned 

to the neurons first. The linear combination (sum of the product) of the weights and inputs were calculated at each 

neuron. 

 

The network was trained depending on the output obtained, when the obtained values were greater than a given 

threshold value, then the neuron “fires” assumes the activated value. In situations when the threshold is not reached, 

it assumes a deactivated value. The back-propagation algorithm was used to minimize the error term between the 

output of the neural network and the actual desired output value. The error term was calculated by comparing the net 

output to the desired output which was then feedback through the network, causing the synaptic weights to be 

configured in an effort to minimize error by activating training algorithm, which modifies the ANN parameters 

sequentially. This process was repeated until a sufficiently low level of error was reached, or until a predefined 

cutoff point was reached (Larose, 2014). A representation of a single and multilayer feedforward neural network 

adopted are shown in Figure 1 and 2, respectively
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Figure 1: Single feed-forward network 
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Fig. 2: Fully connected feed-forward network with one hidden layer 

 

Network design and training 

For this study different architecture of the feed-forward network was used, with each unit connected to all units in 

the next layer. The input to each hidden neuron is a linear combination of a vector of weights, input SNP variants 

and a “bias” weight for the feedforward networks. The input to each neuron was obtained as: 
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i 

1j 

i 

q [t] = the hidden neuron 

w [t] = vector of weights 

ft =the sigmoid activation  
 

 

 

xij = input value of the SNP variant 

 

at = the bias weight 
j= input SNP variant (range of 1 to m) 

m = total number of input SNP variants 

 

The sigmoid activation function was then used to transform the results obtained using the following equation to 

produce the hidden neurons output value: 

ft  
1 

 
 

1 et 
 

The inputs to neurons in the output layer is a linear combination of outputs of neurons in the hidden layer, weights 

of the output layer, and an output layer bias neuron. The value obtained is transformed by the linear transformation 

function pt (.) to generate the value of the predicted phenotypes (body weight) of an individual as: 

y   p  
 
b  

s

 w qt 



i t 



t 1 

2t    i 




where 
yi =predicted body weight 
pt= the linear transformation function 
b = the bias neuron: t = the hidden neuron (range of 1 to s) 

s = total number of hidden neurons 

w2t = vector of weights 
q t = hidden neuron 

 

The training was done using the backpropagation procedure with training sets presented in a random order. The 

optimal weights were established using Levenberg-Marquardt back-propagation algorithm (trainlm) with a maximum 

number of iteration (epochs) equal to 2000, which is commonly used for training ANNs (Fojnica et al., 2016), this 

minimizes the error between the predicted and the actual weight. The process of optimization was performed until an 

optimal mean error squared level is reached or stopping criteria was fulfilled. The sigmoid function was used as the 

activation function in the hidden layer, with the linear transformation function as shown in equation 3 being used as 

the activation function in the output layer. 

 

Once the network was trained the testing dataset was finally presented to test the model, and the output for each subject 

was recorded, based on their marker genotype. The performance of neural networks built using feedforward 

architecture with the Levenberg-Marquardt training method was examined where the number of neurons in the hidden 

layer was repeatedly increased from one neuron, 10 neurons, 16 neurons and 32 neurons. Mean absolute error (MAE) 

and Pearson’s correlation coefficients were used to measure the ANN predictive performance as a measure of extent 

of non-linearity among explanatory variables within and between genotypes and phenotypes. The Mean absolute error  

was calculated as: 
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where 
f i = the predicted value 
yi = the actual value 
ei = the error value 
n = the number of sample  

Pearson’s correlation coefficient of the predicted and actual values (r) was calculated as a measure of linearity 

between input and output values as follows, where n is the total number of samples: 

n fi yi  fi  yi 
r 









RESULTS 

The architectures adopted for this study was a single hidden layer with varying number of neurons i.e. from 1 to 32 

neurons to examine the extent of non-linearity among explanatory variables within and between genotypes and 

phenotypes. Performance of different neural models was used to measure the extent of non-linearity. After subjecting 

the data sets to different neural network architecture, the MAE and R was used to measure the performance. The 

results for the training, validation and testing data sets are in Table 1. 

 

As a benchmark, a linear model with one neuron in the hidden layer and linear activation functions in the hidden layer 

as well as in the output layer was adopted. The network is similar to genomic best linear unbiased prediction (GBLUP), 

in that network performs a multiple linear regression, in which weights of hidden layer can be interpreted as regression 

coefficients (Ehret et al., 2015). 

 

Table 1: The Pearson’s correlation coefficient (R) and mean absolute error (MAE) for training, validation 

and training data set for different neural network architecture 

Architecture   R MAE 

Single hidden layer with 1 neuron Linear Train set 0.92 3.25E-3 

  Validation set 0.62 7.75E-3 

  Test set 0.77 5.72E-3 

Single hidden layer with 10 neurons Non-linear    

  Train set 0.97 8.31E-4 

  Validation set 0.79 4.67E-3 

  Test set 0.86 2.98E-3 

Single hidden layer with 16 neurons Non-linear    

  Train set 0.96 1.10E-3 

  Validation set 0.70 8.07E-3 

  Test set 0.68 7.73E-2 

Single hidden layer with 32 neurons Non-linear    

  Train set 0.97 9.31E-4 

  Validation set 0.37 6.88E-2 

  Test set 0.27 7.60E-2 

 

The MAE is the average squared difference between the output and the target values, where, lower values are better 

and zero value means no error. The R-value measures the correlation between the output and the target/ actual values 

where R close to 1 means perfect relationship. The ANN models differed in predictive performance depending on the 

number of neurons in the hidden layer, for instance the neural network with one hidden layer containing 10 neurons 

in the hidden layer yield high correlation of 0.86 and performance (MAE) of 2.98E-3 as shown in Figure 3. 

    
 

 

  
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Figure 3: Pearson’s correlation coefficients for the training, validation and testing data set related to 10 

neuron architecture 

 

When the network dimension was increased to 16 neurons, the performance of the neural network for test and target 

model decreased to 0.67 and 0.84 respectively for R and MAE increases to 7.73E-2 as shown in Figure 4. 
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Figure 4: Correlation coefficients for the training, validation and testing data set related to 16 neuron 

architecture 

 

Further increase of the network neurons to 32 the correlation coefficient for test and target decreases to 0.27 and 

0.52 respectively for R and 7.60E-2 for MSE as shown in Figure 5. 
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Figure 5: Correlation coefficients for the training, validation and testing data set related to 32 neuron 

architecture 

 

As a benchmark for non-linear models, the linear model with one neuron in the hidden layer was adopted. The results 

from the testing data set of the model were 0.77 for R and 5.72E-3 for the MAE as shown in Figure 6. Computational 

time was long during the training process this is as a result of all input information passing through a single neuron. 
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Figure 6: Representation of linear model correlation coefficients for the training, validation and testing data 

set related to one neuron architecture model 

 

DISCUSSION 

Artificial Neural Networks are machine learning models based on operating principles of the human brain. It has 

capability of modelling non-linear systems, with the information learned through experience and also they have ability 

to handle noisy data (Ehret et al., 2015). This model has been reported in literature to act as an alternative predictive 

model, because of their ability to act as universal approximators of complex functions and can capture non-linear 

relationships between predictors and responses (Gianola et al., 2011). The performance of ANN is determined by the 

network architecture i.e. the number of hidden layers and neurons, type of training, linear or non- linear transformation 

process and the nature of input data set. Therefore, for better performance of ANN, all these factors have to be put 

into consideration. For instance, the network dimensionality has immense effect through network overfitting or under 

fitting leading to reduction in performance predictions. 

 

This study compared the extent of ANN model with different architecture in handling non-linearity of data for the 

prediction of a phenotypic trait based on SNP data. The effects of network architecture and number of neurons in 
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hidden layer on performance prediction were used as a measure of the best performing non-linear neural network 

model for the prediction of yet to be observed growth rate in indigenous chicken. The performance of different non- 

linear ANN models adopted for this study differed in predictions performance depending on the number of neurons in 

the hidden layer. The model with the highest correlation (R) and lower MAE is considered to be the best model, this 

is because MAE is the average squared difference between the output and the target, where the lower the values are 

better the model likewise R close to 1 means perfect relationship between output and target. 

 

According to the results from test data set obtained from this study, the model with a single hidden layer and 10 

neurons was considered to be the best non-linear model with R corresponding to 0.86 and lowest MAE of the value 

of 2.98E-3. Further increase in the number of neurons in the hidden layer to 16 and 32 the correlation for test data 

decreases to 0.68 and 0.27 respectively, subsequently the MAE was high corresponding to 7.73E-2 and 7.760E-2 

respectively. These results, therefore, indicate that dimension reduction of neurons in the hidden layer resulted in 

higher, more accurate and more consistent predictions for growth rate. These results are consistent with those of 

Hamidi et al. (2017) and Ehret et al. (2015) who concluded that ANN is useful for functional traits with potential of 

mapping non-linear relationships between genotype and phenotype. 

 

The more the number of neurons in the hidden layer, the worse the ANN model becomes. This is attributed to the fact 

that increasing the dimensionality of network architecture makes ANN learn irrelevant details of the data set and the 

number of features increases making the model more complex. The more the number of features, the more the chances 

of a model being under or over-fitted thus making the model worse for prediction of future target values (Ehret et al., 

2015). According to Mcdowell et al. (2015), network structure with many hidden layers is notoriously difficult to 

train, thus affecting the prediction performance. Therefore, increase in dimensions of the neural architecture through 

number of neurons in the hidden layer is only necessary in the case of noisy datasets, where it served to handle the 

noisy data (Besic et al., 2017). As a recommendation, for better predictions of phenotypes it’s important to consider 

the nature of neural network, the choice of input values and its distribution in the input data set. From this study, 

therefore, a single hidden layer with 10 neurons has an ability to account for non-linearity in the data set thus resulting 

in better performance predictions. 

 

The current study also investigated the performance of the linear model as a benchmark in prediction of growth rate 

in comparison with the non-linear models. The results for the test data showed that the linear model had a correlation 

corresponding to 0.77 and MAE of 5.72 E-3 as compared to those of non-linear models shown in Table 

1. The model chosen as the best non-linear model performed better than the linear model even though the more 

complex non-linear architectures with 16 and 32 neurons could not outperform the linear ANN. These results were 

inconsistent with those of Ehret et al. (2015) which reported that the linear ANN and the best non-linear model 

performance were almost similar. This indicates that linear models can as well produce reliable results for making 

genomic predictions. Non-linear ANNs for predicting performance can more accurately evaluate effects of each 

genotype without much interference of environmental effect, therefore selection of the superior progenies in a breeding 

program will be more efficient using the superior genotypic value, and not the superior phenotypic value (Peixoto et 

al., 2015). The ANN has been reported to greatly approximate unknown relationships, and work much better in the 

absence of noise in the dataset (Besic et al., 2017), thus the best ANNs have ability to handle non- linearity in dataset. 

 

CONCLUSION 

The results of this study showed the extent of non-linearity between and within genotypes and phenotypes as 

determined by the ANN architecture. Thus, for efficient consideration of non-linearity in data set, this study 

recommends adoption of a single hidden layer with 10 neurons because dimension reduction leads to higher, more 

accurate and more consistent predictions performance for growth rate. This study reveals the fact that increase of 

dimensionality of network architecture leads to model under fitting or overfitting as proven by the results obtained 

from the complex non-linear models (with 16 and 32 neurons) 
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